The American Concrete Institute (ACI) has released a paper called Sliding in Compression Zones of Reinforced Concrete Shear Walls: Behavior and Modeling.
A new sliding model was developed to predict the shear stress-sliding deformation relationship in the compression zone of a reinforced concrete shear wall. The model considered the reinforcement ratio, the reinforcement bar diameter, the concrete mixture, and the flexure-induced crack width to calculate the shear stress transfer across a crack.
ACI says: “The results of the model match the responses of 13 compact sliding tests, which represent the compression zone of a concrete shear wall. The specimens were initially precracked and loaded in a bidirectional test setup up to sliding displacements of 50 mm (1.97 in.).”
The results showed the size of a flexure-induced crack has a major impact on the sliding behaviour.
According to ACI, the sliding resistance depends primarily on the aggregate interlock effect and its damage. Remarkably, the amount of reinforcement crossing the crack does not affect the peak sliding resistance significantly, but it affects the sliding shear stress-deformation behavior, as observed in the experiments, the institute adds.
The paper was written by Burkhart Trost, Harald Schuler, and Božidar Stojadinovic.